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THE SU(3) GENERALIZATION OF RACAH’S
SU(2j+l) o SU(2) GROUP-SUBGROUP

EMBEDDING

J. D. Louck and L. C. Biedenharn

Los Alamos National Laboratory, Theoretical Division
Los Alamos, New Mexico 87545 (USA)

Abstract

Racah showed how to embed the symmetry group, ~~(2) or SO(3), of a physical

system in the general unitary group StJ(2]” + 1), where the latter group is the moat

general group of linem transformations of determinant 1 that leaves invariant the inner

product structure of an arbitrary state space ~j of the physical system. This state space

Hj is at the same Lime the carrier space of an irreducible representation (irrep) ~] of the

symmetry group. This embedding is achieved by classifying the vector space of mappings

Hj + Hj ss irr~ucible tensor operators with respxt to the underlying symmetry group.

Three irrcxhible tcnaors are the generators of the Lie algebra of Su(zj + 1). Rscah’s

nmthod is rmicwed within the framework of unit tensor operators, The genertdi?’ion of

tIlis teclitliqil~ to ttlc symmetry group ~~(3 ) to obtain the embedding ~7(3) C ~~( TI),

Wtlml? ?1 = dim[m] is the dimension ~f an arbitrary irrep of ~~(3). As in the SU(2 )
ram, tl~e grmlp [~(o) is LIICsymnmtry group of a phy~ical system, and ~(dim[rn]) is tlw

nl[mt grnrral group of Iihcar transfornlationa ttl~,t pr~rves ttle inner product ntructuro

of nll artjitrnry ~tntc spare H[,nl of the NyNt~lli, ‘~]lin wtate space H[,nl is at the Ham

tinw the carrirr slmrr of irrrp [?)1] of thr Nymnmlry group U( 3). I’rclilllinary rmmlts on

I Iw I,ic nlgehraic vnllinhingn of CT(3) llarmh mwllkimt.s in conseqmmm of tlw rnlhmhlillg

S[7(3) C Eti C SU(27) twu givm.

J. INTRODLJCTION



One well-known example of these techniques is Racah’s embedding of
S[~(2), resp., SO(3), in the general unitary group SU(2j + 1):

S~~(2) C SU(2j +1) , resp., SO(3) C W(!lj + 1) , j = 1,3/2, . . . . (1.1)

Mathematically, the embedding in Eq. (1.1) can be realized in many
ways, most of them trivially. The essential point of R.acah’s method, how-
ever, is timt the SU( 2) [resp., SO(3)] is to be identified as the s~mmci~
group of a given physical system, while the group SU(2j + 1) has quite a dif-
ferent origin: It is not usually a symmetry of the physical system as a whole
(global symmetry), but rather is realized as a group of unitary tmnsforma-
tions that lenve invariant a given energy eigenspace of the Harniltonian, or a
mdel Harniltmian, being used to describe the system. The problem posed
by the embedding (1.1), and solved by Racah, is to efect the embedding is
such n way that the symmetry group structure fits into the general unitary
trnmformat ions of the degenerate energy eigenspace m a subgroup of trans-
formntimm It is for this reason that the method finds many applications to
physicud problems, sometimes unexpected.

Rncaha19 solved this physical ernbdding problem by the technique of
clmmifying thr Lic algebraic gemrators of the group SU(2j + 1) as irreducible
tmwmr opor~tors with respect to the transformations of the energy eigen~pace
corrcwpomling to the underlying rnymmetry group, SU( 2) or SO(3). In thi~
mnntwr, onr ohtnins a basis of the Lie dgcbra of SU(2j + 1) in which the
drudimr ronstnnts nrc given in tmms of the 3-j MCI 6-j cmfficimts of thr

symmd ry Krotlp, Thts wpplimtion~ of thc Lie algebrn of Sfl( 2j +1), prmcntwl
in thi~ wny, t.o ntomir Pm! nuclrnr ~pmtrancopy nrr Wdl-km)wn.

W Irvirw iu %wtion 11 n slight gcnmdimtion of the dmhliug (1.1)
to thr fcmn

~T(2)C[~(2j+ l), j= 1,3/2, . . . . (1.21t)

I.I’(0) (“ [.f((lim[rn]) , (1,:111)



drmotm the dimension of an arbitrary (integral) irrep

of t~(3). The nii~(i = 1,2,3) are arbitrary integers (positive, zero, or nega-
tive) satisfying

mla ~ m~~ ~ maa . (1.4h)

In analogy with Racah’s approach, the U(3) group in Eq. (1.3a) is to bc
the symmetry group of the physical system, while the group LT(n), with
11 = dim[m], is to be a group of transformations of a degenerate rnergy
c.igcnspace.

The major deterrent to a straightforward generalization of the embed-
ding ( 1.2a) to that of relation ( 1.3a) is the resolution of the multiplicity prob-
lmn, which afflictH all unitary groups beyond U(2). This involves additional
st mcture, opedor pattern lahelling, which makes the associated Wigner (3-j)
and Rncnh (6-j) cm+Ecient structure of U(3) decidedly more intricate than
thnt of U(2). Noncthrhws, thcsr additional operator labelings and their
structural rrlations mre the esmntial key for developing comprehensive appli-
cations of higher unitary ~ymmetry to problems such as thnt powd by the
wubmlding (1,38 j.

It i~ commnirnt to pmwnt in Smtirm II Racah’H method for U(2) by using
(Iirrctly thr conwpt of n U(2) Wigner o~rator. This apprcmch places clearly
in rvidrnrr thr pnrnll.ri routr to br followwd in the [J(3) gerwraliznt ion. Tlw
Imdcrlying nlgohrn of t110LT(2 ) Wignm (unit tensor) npwatm~ i~ nn wwentinl
ingrwlirut of thi~ mppromrh.

Tlw grmmdizntion to (7(3) i~ dwrelopcd in Smtion 111 with cmpluwh on
tlw rcdr {Jf [qwrntor pwttlmn~ mid the U(3) Wigm’r opmttor dgch.

111Rm’nll’~ mnlnddiug of S[1(2) [w SO(3)] in [~(2j + 1), the structurr
ccm~t.nntti of thr Lir nlgrhrn fnrtorim into n product of WCC and RWVA
rldfiricntw mmrxi~tmwc of m group G rim+ that, for rxnmplr, SO(3) C
C; C [T(2j + 1) ml hwl to thr vnnidting of n Rmmh rodiirirnt, won though
id] tlw trinngh’ nml ~ynmwtry ronditi(mN nrr fldtilh’d, Tlw fimt oxmnlplc’ WUN
givrll hy Rncnh.q’ (!% VILIIdtW Ilmglw rt al, 1” mid ILINO Drym rt rd.11 fttr n
~llml[mry of WA Lir dgdmnir zrr{ww M of I!M, ) It i~, tlwrc’fcm’, md~md tc~
risk: (hi mmtrivhd Zrr(mw {J{thr ,5’[1(3) (jj c(m4fh”irnt~nrhw in t“OIINtStlIItSIIt”t”

t)f t,lw t*xit4mlrc* tjf n gr[nll~ (i’ Nnt hj i:!g



II. RESUMti OF RACAH’S METHOD

We summarize in subsections A-J below the vector space and algebraic
structures underlying Racah’s SU( 2 ) c lY(2j + 1) embedding. The empha-
sis is on the algebraic properties of unit tensor operators, since this makes
trnnspnrent the generalization to U(3).

A. Vector Space:

llj denotes a finite-dimensional inner product qxwe with orthonorrnal
La%isgiven by

13J={ljm >lnl=-j, -j+l, . . ..j} (2.la)

of dimension

dim H, = dim~] = 2j + 1. (2mlb)

Hrrr j may be any intrger or half-integer in the set

jE{o,l/2,1, ...}. (2.lC)

B. Action of the SU(2) Lie algebra on Hj:

The nnguhu momrntum npcratcm J+ = JI + iJ2, Ja, J- = JI - iJx,
whmr J = ( JI, J2, J3 ) i~ the total nnguhr momentum of tho phy~icd uyw

(
trm in qumtiou genrmtor~ of the qwmtfd rotfltion group, SU(2)) imvr tiw

wnlldnrd Iwtion on tilt’ MpMc H,:



in which D“ (1~) denotes the Wigner D-matrix (- Eq. (3.86) of Ref. 12 (Vol.
8) for thrir explicit definition, as used here); that is, the correspondence

u + O“(U), each U E W(2) , (2.4)

is a representation of the group SU(2) by unitary matrices of dimension,
dim~] = 2j + 1. This unitary property is also expressed by

TU-I = Tut , (2.5)

where t denotes Hermitian conjugation of [r.

D. Irreducible Unit Tensor OperatorMape Hj + Hj:

o

()a -a :Hj~Hj (~.6a)

a

with n = —0, —a + 1, , , . ,a, FUCa bwi~ of all mappings of the vector
spwr H, into itwlf. The C-cocfficimlt~ in the definition (2,6b) iue Wigner-
C’lrl)wh-Gordml (WCG ) cut’ffiricnt~ of SU( 2); that is, these coefficients MC
thr t4rnwnt~ of thr rwd orthogomd matrix thnt reduces the Krmwcker prod-
Ud NprWCIltittbIl P(u) X ~j(~ ) iIltO R di~t HUIIl Of h! hW~8 ~“ (~ ),
which vvr [lonotr ~yndxdicully by



The WCG coefficients are related to the 3-j coefliciente by

C$’-v= (-l)’-b+’ (:) W’c+””z
The operators defined by Eq. (2.6b) obey the following relations:

o 0 ~t

x(a Y )-a - -b =1, OnHj;
o a /\ba

(2$)

(2.9a)

F<’m(a:-a)(b:-b)tjm >= 6aAtmfl(2j + 1)/(2a + 1) . (2.9b)

In consequence of property (2. W), the operators defined by Eq. (2.6b) are
called unit tensor opcrutor8 or Wigner operutim.

~j }, the set of 2a + 1 maps (2.6a), correspondingF’orcacLa E {0,1, . . . ,-
tea=-a,-u+l, ,.. , R, transform under the action of the unitary operator
TII defined by Eq. (2.3b) according to

o

()TII (1 - a TII-I
()

= ~D~la(U) a 0-a , each U E SU(2) . (2.10)
n a’ (t’

Tili~ quiuariance refdion expressm the propwt y that the set of operate.m

(1

(( )(1 - (J n = -(1, –a+l, .l, ,a
n }

(2.11)

E. Algebra of Unit ‘Iknmor operators:



where W~&j denotes a Racah inuan-ant operator. Its eigenvalue on the space
Hj is given by

lV&’’f(j)= [(2c + l)(2j + l)]’lz W(jtzjb; jc) ; (2.13a)

that is,

W~& I jm >= We%;(j) Ijm > . (2.13b)

The W-coefficient in the right-hand side of Eq. (2.13a) is a Racah coefficient,
which is given in terms of the 6-j coefficient by

W(jajb : jc) = (–1)2J+’+L
{i ; :}

(2.13c)

F. Weyl Basis of the Lie Algebra of U(2j+l):

The set of nz Weyl basis elements of the Lie algebra of U(n) is given by

{Eikliq k=lq2, . . ..n}. (2,14)

Thww gmwrntor~ of the general unitary group U(n) (indeed, of the general
limmr grcmp) obey the commutation rehstions

[l?i~, ~1~~~]= ti~l,E,~, _ (’iik,Ei~k . (2.15)

For n = 2j + 1, wc cltwotc the set (2.14) of gmlcr~tors of U(2j + 1) by

{E,-,,,l+,,,-m+, I m’,m = -j, -j + 1, . . . ,j} . (2.lG)

F, Kacdi Basis of the Lic Algebra of U(2j+l):

‘riICirrnl (mthogomd nmtrix 1? of tlimril~iml (2j + 1)Z i~ ddhd hy

(R)m,,rr,t,,, ( ((’:-”)““)‘2-17)=[(2(1+ 1)/(2j t 1)]’/2 jm’



orthogonal. This matrix is now used to define a new basis, the hcah basis,
of the Lie algebra of CJ(2j + 1):

J5~ = ~ (R)~fY;~J~ Ej-mf+~,j-m+l I (~.lg)

m’, m

where we suppress j in the notation & for the Racah basis set:

{E~la=O,l, . . ..2j. aa,aa+l,l, a}. ,a} . (2.19)

Since the matrix R is real orthogonal, relation (2.18) can be inverted to give
the Weyl generators in terms of the Racah generators:

The embedding of the quantal rotation group SU(2) k U(2j + 1) is
now obtained in the following way: The relation between SCJ(2) angular
momentum operators (J+, J3, J-) and Wigner operators is given by

J+ = (2 J2)li2

(’ :-1)7J3=(J2)’’2(1 :-1)

J-
(0)

= (2J2)l/2 1 – 1 ,
–1

(2.21)

From these relations and Eqs. (2.18), we obtain the following operator iden-
tities 011 Hj:

J+=– P(V + l)j(j + 1)/3] ’/2 E’+1 9

J3 = [(2j + l)j(j + 1)/3] 1/2 E; ,

J- = [2(2j + l)j(j + 1)/3] 1/2 E!l . (2.22)

These relations give explicitly the embedding of the physical SU(2) group in
[J(2j + 1).

The commutators of the angular momentum operators (J+, J3, J_ ) with
Ihc clrnwnts (2.18) of the Racah basis are given by

[J*,%] = [(~w(a+a+l)]’1’ E:*, , (2.23a)

[.1, , E:] = 1?: . (2,q3h)

Thww relations show tht the li!mah basis of the Lie algebra Of U(2j + 1)
con.~i,~L$ of irrcducibk temor optwahw,~ widt respect to SI?(2). (The result~,
E(Is. (2.23), arr most cw~ily dmivml hy Iwitlg mhttions (2.26) LC1OW.) Rcln-
t ions ( 2.23), in turn, imply the trnnsformfltion proprrty:



G. Structure Constants in thell.acah Basis:

If .Y = (-Yik ) and Y = (Yik ) are arbitrary ma rices of dimeusion n (over
the complex numbers), wc define the (extended) elements of the Lie algebra
of U(n) by

n n

Lay = E .~lk E1k9 Ly = E ~8&E~k . (2,25)

i,k=l i,k=l

It is then easily proved that

[Lx, LY] = L[x,Y] . (2.26)

Application of this relation to any pair of elements E: Md JJ$ in the
Racah basis and use of the product law (2.12) for unit tensor operators gives

[G*q = ~ 4%7q J

C,l

where the structure consttmtu are given by

‘%, = [(-1)’+ k-’ – W:&7[(2a+ l)(2b + 1)]1/2

(We have used well-known symmetries of the WCG
to bring the structure constants to the form (2.28).)

H. Action of U(2j+l) on Hj:

(2.27)

W(abjj; cj) . (2.28)

and Ram& ccwfficients

Let V E U(2j + 1), and let the elements of V be enumerated by (Vm~~ )
with m’ = j,j - 1, . . . , - j denoting rows (read from left to right), and
In = j,j -1, . . . , - j denoting columns (read horn top to bottom) in the

matrix V. Then the action Sv of U(2j + 1) of Hj is given by

SV ljm>=~Vmfmljm’ >,mchVEU(2j+l)m (2.29)
~t

In particular, sinm DJ(U ) G U(2j + 1), wr find that

S,Y[,,) = Tu , (2.30)

This rwmlt ~ht}ws chmrly thnt the sptwc Ifj rfirrim the fumlamcntnl ro~m-
srut nt icm

~[lo’’”ll] (~) = ~.’ (~,31)



of L:(2j + 1) and that this representation, when restricted to the quantal
rotation subgroup SU(2), M embedded in U(2j + 1) in the R.acah basis,
reduces to the irreps of this SU(2):

~[lo..cll(Dj(u)) = (2.32)DJ(U), each U G SU(2) .

I. Expansion to U(2) c U(2j+l):

The generators of U(2) are obtained by adjoining the invariant operator

2j+ 1

EE’: = (2j + i)-1J2 Eii
i= 1

(2.33)

to the SU(2) generators (J+, J3, J_ ). The transition to U(2) is then best
made by using the full U(2) Gel’fand patterns as explained in detail in Ref. 12.

J. The Modification to SO(3) c U(2j+l):

The results given in A-H above apply equally well to the group SO(3)
of 3x 3 real, proper orthogonal matrices corresponding to the rotations of a

physical system in R13. It is customary for this case to write j = t, J = L =

(LI,L2,L3), and h replace ~t(~~) by @(R) = DC(U(R)), where +U(R) ~

R in the two-to-one homomorphism of SU(2) onto-SO(3).
We conclude this summary of Racah’s embedding as described in A-H

above by again pointing out that SU(2) [resp., SO(3)] is the group under
whose action the physical system is invariant (symmetry group). The group

[~(2j + 1) [resp., U(W’ + 1)] need not be a symmetry group of the full physical
system, but only of special quantum states of the system. This general
unitary group always has the significance of being the most general group
of linear transformations of the space Hj that preserves the inner product
structure of this space.

III. THE U(3) c U(dim[m]) EMBEDDING

We can tmw give the

U(3) C [~(flim[m]) (3.1)



is taken as the symmetry group of a physical system, or the model of such a
system. The meaning of the group U(dm[m]) is that it is the most general
group of linear transformations of the carrier space H[~l of MI irmp of U(3),
which preserves the inner product. The basic problem is to classify the set

of all maps HI~l + HI~l as irreducible tensor operators with respect to the
underlying symmetry group U(3). We proceed as in Section H.

A. Vector Space:

H(~l denotes a finite-dimensional inner product space with orthonormal
basis given by

Bm

We recall th~t a
positive, zero, or

{

nl13 mzs msa

)

this array is a
= mla mzz 1G~::’fand pattern “

?nll

U(3) Gel’fand pattern is any triangular array
negative, satisfying the betweenness relations:

()[m]
, [m] = [ml~masmsa], in

m ‘(m1%:22) ~

(3.2)

of integers,

(3.3)

(3.4)

At times we use a notation less encumbered with subscripts. The dimension
of the space H[fi,l is dim[rn], as given by Eq. ( 1.3b ).

B. Action of the U(3) Lie Algebra on H[m]:

We denote the set of Weyl basis elements of the Lie algebra of the sym-

metry group Lr(3) of a physical system by

{K,, li, j=l,2,3}, (3.5)

Thww oprrntors wc, hy (Idixliti(]xl, linenr mappings H[,n] + HI,,,] ~atisfyin~

tlw (“ofl~l]lllt[~tliol~”rdatiolls

[[(,,, h-kf] = h,kh-tt - h,,Kk, , (3.6)



and the Hermitian conjugate relations K:j = Kji.
erators of [“(3) on lfl~l is given by

) x(~i,[ml = [ml~,. [d
m m’ “ m

m’ )

The action of these gen-

[m] )m’ ‘
(3.7)

where the matrix elements < . . . IKI’I... > are the standard tines. lS
The state space of a physical system having U(3) symnwtry can then be

decomposed as a direct sum ~ &lflml (including multiplicities, as required).
The vector space ~[~] used throughout this section has this signihnce of a
subspme of states of such a physical system.

C. Action of U(3) on h[ml.

For each L’ E [’(3), the Lie algebra { ~,J } generates a urhry trmsfor-
mation T~Fof the space lflml:

(3.8a)

wiwre DIM]( [“ ) denotes a unitary matrix with rows and columns enumerated
by the L-(2) Gelmfand patterns W’ snd m. respectively. Here the irrep label
[m] occurs as the top row in hot h patterns:

(3i8b)

Thv unit my irrt=duciblr rqmwtmtation nmtrices

{Din(u) I u E C’(3)} (3.9)

objrctss’fi’1 4-Z4 IUld mc known cxplicidy, hut arc quite
only proprrty w(*U(WI hrrr is thnt thr r[)rrt’slx]ll(lctll”c



D. Irreducible Unit Tensor Operator Maps H[~l +H[~l:

It iswell-known howtodetermine theirrep labels [k]= [k1k2kj]of the
irreducible [’( 3 ) tensor operator maps:

T([~] ) : ~[rn]+ ~[m].
The L?(3) irrep labels are just those occurring in
necker product

[fi] X [m] = ~@[k] .

(3.12)

the reduction of the Kro-

(3.13)

Here [fi] denotes the irrep of [’(3) that is the complex conjugate of [m]:

[fi] = [fi,sfi~~fi~s] = [-rosa, -mza, -mla] . (3.14)

(See, for example, Ref. 14. )
The explicit decomposition of the Kronecker product [~] x [m] into irreps

of I!-(3) is given by

[fi] x [m] = ~ 1([H7] x [m]; [k])[k] , (3.15)

[k]

where 1( [fi] x [m]: [k]) denotes the (intertwining) number of times irmp [k]
is contained in t hc representation [fi] x [m]. (See Rcfs, 25-28 for a discussion
of tlwsr Ilumbrrs ad ti~eir relation to the Littlewood-R icl]ardson numbers. )

Thr summntion in Eq. (3.15) is rwcr all irrqs

[k] = [k,k~ka] (3,16a)

such that t hr k, tirr intrgrrs mt, isfying the following relntimw:

(i) k,+kz+kx=O,

(ii) 0< k, < ml~ -r~l~~ ,

(iii) –(rn, ~ - ?tl~~) ~ k~ ~ () . (3.161))

‘rhi inli’rwining nulldm IMMt.k following oxplirit vnluvs:

1([=] x [Ilf]; [k]) = k, - k~ + 1,

f(m kx ~ () 1111(1kI ~ Iliill(!rlll – ?I12t,lIIXI – )1111);

(3.1711)

I([rti] x [III]: [k]) -= lllili(t~il~ -- ltJXI -- k~, ?IIxJ – IIJ:II -- h) ,

for AU ‘-:O IUI(IA-l .* ltlih(r~tll ---tII~:I, ?IIXI - 111:1:1).

(:1.171))



Forkz <O, we have the relation

I([iii] x [m]; [k]) = I([fi] X [m]; [~]), (3.17C)

so that together Eqs. (3.17a,b) and (3. 17c) give explicitly d multiplicity
nmntwrs appearing in the Krmmcker product reduction, Eq. (3.15).

The explicit set of unit tensor operators, which constitute a basis for all
maps ~[~1 ~ ~[ml, is given by

(3.18a)

where the irrep Mel [k] runs over all values satisfying the conditions (i)-(iii)
above. For each such [k], the entry in the operutor ptdiewt

nnd the n,, in the Gcl’fnnd p~ttmn

(3.18h)

(3.18r)

t=k~,k~+l,.,.,k~- 1 + [([hi x [m] ; [k]) ; (3,18d)

(tlini[?n])x -.. ~ I([i_ii] .c [tfl]; [k]) tlim[kl , (:lilo)

[k]



where the summation is over all [k] satidying conditions (3. 16b).

It is mwfld to give an cxmnple illustrating the above rules:

[(),-1,-2] x[21 o]= [00 o]t112[l,o, -l]@ [1,1,-2]

@[2, -1, -l]@ [2,0,-2]. (3.20)

The w’t of lmtterns hdwlling the unit tensor oper~tor maps JYp i o] ~ lY121 o]
are

[O:;:O)(lO;O-l)(l-’;-!:)l

providwi the 1 + 2(8)+10+10+27 =-64 mappings if ti~e spnce Hp 10], with
[lim[2 1 ()] = 8, onto itmlf.

TIN nrtion of tlw unit trmor o~wrator (3. 180) on the SINWCHiml i~ giww
by

(3,231L)



In consequence of relation (3.23Fa), these operators arc called unit

(3,23(.)

opmntors,
For each irrep label [k], the set of dim[m] maps (3.18a) corresponding to

till Gel’fand patterns n transforms under the action of the unitary operator
TII (lefined hy Eq. (3.8) according to

()T,, [:] Tl,- ,
()

= ~D$a(u) [:] .
a n’ d

(3.24)

This rrlation rquivruimce cxprtwses the property that tlw set of oper~tors

}

(3,25)

E. Algebra of U(3) Unit Tensor Operators:

x{(ly)(l$)(l~q} (:),27)



The summation is Eq. (3.26) is over all irreps [k”] contained in [k’] x [k], and
Am ovm fill Gel’fand pattwns a“ and operator patterns J“, M described in
Eq. (3.2!)t) ) behnv. In Eq. (3.27), the symbol < 0“s I < > I ms. > dcmotm ~
L’(3) \VCG coefficient, and {(. . “)(” s“)(” ““)} denotes a U(3) Racah invariant
(qwrator. The rigenvaluc of this U(3) Racah invariant on the space H(~l is

(I(w)twl

{(’::]) ($l)([i])}([ml)

(3.98a)

nnd is dcfinrd by the action of the invariant operator ml an arbitrary vector

of ~lrlil, which may bc taken to he a basis vector:

{(’iq~l)(’!)} ,:1)

={(’;:’)(~l)(’kl)}([,nl)
1:1), (&~8\,)

The L’(3) Rncnh cocfficitmt given l~y the notation (3.28R) is a real mmhr
of rollsi(lrrnl)lr complexity in its (Itqxmdrncc on thr intrger rntries rntrring

its (Idinit.i(m. For ckity, WP dis]dny the symbol fully, in unnbbraviatwl
Ilotntitm:

{

(kit:-:3)}(,111131112311



Here we use E to denote, for example, that [k] occurs in the Kronecker
product [=] x [m] reduction.

‘1’hc above notation for a U(3) Racah coefficient is explained in detail in
Rcfs. 14,36; indeed, the notation extends to U(n). It is useful to remark that
only operator patterns and the irrep labds of the imp sp~ce ~[m] appear

in this notation, the latter rdlecting that the coefficients have their origin
m invarinnt OrJCrdOr S,and the former reflecting that operator patterns are
structual elements arising in the resolution of the multiplicity of irreps in the

Kronecker product for general U(n).
The notation described above applies equally well to U(2) Racah co-

cfficicnts, which arc related in the following way to the standard W or 6-j
not ation:

= [(M+ 1)(2J + 1)] ’12W(a6cd; e\) , (3.3Gti)

(1 = $1?1,2- nl:!~) - p“ - ;(ky+k;)] ,
1

(“ = ;(111,2- 111~~ ) ,

(3.301))



clrarly brought out by the following identities (se Refs. 36-38) for the caw

at ham-i:

{([fi])(fl)([:])}=n~,,([::]($) q

‘( W!O(!Jo(331b)

It is worth remarking hmc that the general algebra of unit tensor opera-

tors is infinite-dimcnsimwd (cxmntably), but since all the operators introduced

in this section arc Inaps H[ml ~ H[ml, the algebra (3.26) is finite-dirnensiorwd,

there being altogether (dinl[m] )Z clcmt-mts in the algebra, which closes. Ixl-
(Ieml, all t hrse unit tensor operators arc represented on lY[~l by real ort hog-
(mal matrices of dimension, (Iim[nl], ~ key fact that we utilize in Section G
I)(’low.

F. Weyl Basis of the Lie Algebra of U(dim[m]):



may be obtained from the following rules: For given U(3) irrep labels [m],
wc introduce a total ordering on the set of all U(2) patterns by writing

(“’’%?’)> (%:’22)
(3.35a)

whcntw’rr t hc first rlonzei~ entry in the 3-t uple

O-42 —mlz,m~2 —m’z,m~l — roll) (3.35b)

is non-negative; otherwise, we write m > m’. The bijection is then given by

(“’1X23) ‘lss ~ (m2:3:33)+dim’ml

(3.36)

with all intermediate patterns being mapped in turn to the integer given by
the rule: if m’ > m with m’ ~ n’ and m ~ n. then n’ < n. This rule accords
with the rmr used in Eq. (2.16), where the index j - m + 1 is mapped to 1

for the highest weight (m = j) and to 2j + 1 for ~he lowest weight (m = -j).

G. Racah Basis of the Lie Algebra of U(dim[m]):

Thr rrnl orthogonal matrix R of dimen~ion ( di7~1[m])2 is defhwd by

R

ltl

[,,,]

rtt’ )

Vlilllllfv-lltfvl I)y tlic pmt(TIls

(1])‘I’1(l([01 (3.371))

‘;(!)-,>,,~[(:1)(1,)]:,,,,,1,,(:1.:)8)



Since the matrix R is real orthogonal, relation (3.38) can be inverted to given
the W’eyl generators in terms of the Racah generators:

‘“’”=fyi(!)(01+)“ (3.39)

[k]
a

The embedding of the symmetry group U(3) in the U(dim[m]) is now
obtained in the following way: The relation betwen the Kij generators of
L~(3) given by Eqs. (3.5)-(3.7) and U(3) Wigner operators is given by (see
Refs. 14,39,40)

o
Iiij (=(-l)J(I)’12 o 01 o-1 )

,i+j,
\

(i, j) ‘

(A-,, - K22)/fi = -(1)1/2

o
00

1 0 -1 ,
\l-1

o

0
/oo\

/ o () )A-1, +- f;~~ + A-:,3 = 1, 0 () () ,
\ () ()

(3.40a)

(3.40b)

(3.40(’)

(3.40(1)

(-l



The eigenvalues of 11and 12 on lf[~l are

We thus obtain the following relations on 1$~]:

o
Kij = (–l)~A([m])E

(1 0(1,1 )

o
0 -1 ‘ i+jv
. .
9

(3.41b)

(3.42a)

(3.42b)

(3.43a)

o 0
I o o\ I 00

Kii = .4ii([?Tl])E ( O 0 0 ) +Bii([m])E( 1 0 -1 \

(3.43b)

[“lJoF;(l’)l=F(~!‘{n]‘w! (3.44)



where < “. . l~ijl... > denotes the standard Gel’fand-Zetlin matrix elements
,. These relations show that the Racah 6asis o~theof the U(3) generators K,,

Lie algebra of U(dim[m] ) consists of irreducible tensor opemtors with respect
to LT(3 ). Globally, this relation is expressed by

() ()

T~/E [:] T[,.* = ~D:#a(u)E [:] , each U E U(3) . (3.45)

u o’ a’

H. Structure Constants in the Racah Bask of the Lie Algebra of
U(dim[m]):

We now apply relation (2.26) and use the produci law of U(3) unit
tensor operators to obtain the following relations for the I&ah basis of the
Lie algebra of U(dim[m]):

[4])~(!’)l=(?)A[$’$ l!ll~(5) (3-4’s)
[k”]
at’

where the structure constants in the relation are given by

A[!ili!]=[ -1

dim[k] dim[k’] dim[k”] 1/2

dim[rn] dim[m] dim[m]

(3.46c)



I. Action of U(dim[m]) On H[ml:

Let 1“ c U(dim[m]), and let the elements of V be enumerated by
U(2) Gel’fand patterns m’ and m described in Eqs. (3.32)-(3.36). Then
action of U(dirn[m]) on H[~l is given by

the
the

)~v [m] ~ ~ [m]= m’ m ) each V E U(dim[m]) . (3.47)
m m’ 9

m’

In particular, since Dlml(U) E U(dim[m]), each U ~ U(3), we find that

sm~l(u) = TU . (3.48)

This result shows that the space H[~l carries the fundamental rep~tation

#o’””d (v)= v (3.49)

of U(dim[m] ) and that this repi esentation, when restricted to the symmetry
group U(3) as embedded in U(dim[m]) in the Racah basis, rmluces to the
irreps of this U(3):

@O.,.01(~1~1(~)) s D1ml(U) , each U E U(3) I (3.50)

IV. RACAH BASIS FOR THE LIE ALGEBRA OF
ANY SUBGROUP G c U(dim[m]):

Let G be an arbitrary subgroup of U(dim[m]):

G c U(dim[m]). (4,1)

Let the Lie rdgcbra of G bavc basis

{X,,.YZ, . . . ,xp} (4,2)

with commutation relations

[Xr,x,]= xc:..Y,,r,lY= 1,2, ,., ,p, [4.3)
t

wlwro {~~~ } dmmtr tlw structlm’ ron~tant~.
Wr iumy rmtrirt the fundnmuutd [1 () . m“ ()] irrcp of [~(dim[m] ) to

f; nml [J)tnin n r{’~Jr(’~(*lltntif~llof G hy mntriww of dinwntiiou, dim[m]. W(O



denote the corresponding representation of the basis elemtnts {X, } of the
Lie algebra by

{M,,M*, . . . ,MP} . (4.4)

These (clim[rn] ) x (dim[rn] ) matrices then satisfy the commutation relations
(&~b):

[M,,i%f,] =~c:.itf,, r,s=l, z . . . ,p. (4.5)

1

We next obtair, the realization of the Lie algebra of G on the vector
space ~[~1 in the following way: Define the line~ map

(4.6a)L, : Him] ~ ~[m]

by

L,= ~(.kfr)m~m E~,m , (4.6b)

m’,m

where {E~, m } is the set, of basis elements of the U(dim[m]) Lie algebra, as

described by Eqs. (3.32)-(3.36). The maps in the set

{L1, LZ, . . . ,LP} (4.7)

then also satisfy the commutation relations:

[Lr, LJ=~c:a L[, r,s=l,2, . . . ,p. (4.8)
t

The operators L, in the set (4.6) can be expressed in terms of the Racah
hwsis of thr Lie algebra of U(dim[m] ) by using Eq. (3.3!3), which relates the
Wvyl and Racah basis:

‘r=f)+!)+!’)‘
[k]

(r

(4m9Fi)

()R,. [:] = ~ (Mr),,,l,,l n
(r nI1,m [(~])([J)lr=12m” ‘49’))



Using identity
Eq. (3.46a) for
lowing relation

(4,9a) for the L. in the commutation relations (4.7), and
the commutator of Racah basis elements. we obtain the fol-
between structure constants:

(,\f)( ‘r($) R4])4$$i’l
[k’][:]
a’ a

()

~11
=x c:,1?,[k”]. (4.10)

1 n“

An important point to note here is that, once the matrix realization

.Y, +.U, , r=l.2, . . ..p (4.11)

of the Lie algebra of G is given, the operator realization of this algebra on
the space ~[~1.

.Yr~Lrv r=l,2... ,p, (4.12)

in the Racah htusis. as given by Eqs. (4.9), is un:quefy dc%=mnincd.

V. ZEROES OF U(3) RACAH COEFFICIENTS

\Ve ha~~ shown in the Section 111 how the CT(3) Racah mefficirllts
rum into the structure constants of the Lie algrbra of tr( dim[m] ) in thr

Racah basis of [his algebra. The symbol for t hesc coefficients and HOIIW
of its properties are given in Eqs, (3.26)-(3,31 ), The codl%ient is zero, hy
definition. whenever the integms entering into the ~rays occurriug in thr

syIIhol fall outside their domains as described hy the gmmrnlizcd trinng!r
conditimls in (i )-(v) given in Eli. (3,2!Jb).

It is a well-known fact tlmt the SC:(2) Ramh cm%(-icnts poswws infinitr
fanlilies of zeroes, even wbcn nll ttw triwlglr cOrlditiOnH nrc fulfillrd nmt nll
symmetries taken into amount, A fcw (If thrsc zmowi ( ninoq i[i hwt, IU9(d’
19S8) havr f(mrld rxplanntif)ll it] trrms of n group C Iyillg In’tw’rril SCr(2) [(W

S~~( 3)] ami C-(2j + 1):

S(’(2) C G ~ (“(2j + 1) , for wmwj ,

or

.5~X3) C C C t“(2j + 1) . for smlwj .



(See Ref. 11 for summaries as of 1986; H also Ms. 10,41-46); since the Lic
algebra of G is n sub-Lie algebra of that of [P(2j + 1), containing also thr
SL-[ 2 ) [or SO(3)] Lic algebra, t hc Lie algebra of G can be realized in terms
of che Ramh Imsis. This t hrn implies relations on the structure constants
giwm by Eq. (2.2S ), kmding in some instances to a required vanishing of n
Ihwnh cnefficirnt. We call zerom of this type Lie dgehaic zeroes.

Infinitr fnmilim of zeras of the Racah cdlicicnts, including th~ Lir
rdgebraic mm, have also km obtained as the solutions of classical Dicq~htul-
t irw equations that arise directly from the explicit form of these coefficimt~.
Brudno47 “mitiattwi thwe Diophantine equation studies, and, since, n nunl-
Iwr of public~tions ‘e ‘s7 skmg these lines have followed. (No comprehensive
t INYMYof tdl zmnw of S[~(2 ) RRcah coefhimts haa yet appeared, to our
knowledge. ) (Aside from t k discovery of several Lie algebraic zerom, thr
occurrrrm of nwnerous zerms was first shown numerically in Ref. 58; scc
nl!m Ref. 5!). )

The qurstion of zeroes of the SU( 3) Racah ccu%cient~ is complicated
lMIyond thnt of S[~( 2 ) by atmthm structural feature: The structure constants
in t i,r R nrnh Imsis givm by Eq. (3.46a) no longer appear in a fnctorcd form
ns t hry do in the SU( 2 ) mm’ of Eq. (2.28). This sit uat ion is unavoidnhlv,
sinrc it is n direct conwqut’nce of the multiplicity ~tructurc of tht’ Kronrckcr
prmiurt rvdurti[m. on the other hnnd, if G is ft group Huch thnt

{(’?)($)([i’)} ‘o (/iA)



wtmmm thr following condition is fulfillml:

i+i’–i” s [k;- Ai(~’)] - [k~ – A3(#)] +2 , (5.5)

wkrc the indkm i, i’, i“ lmve the following definitions in terms of the opm-
:itor pattcrlls nppoaring in the symbol (3.29n):

{

k,-t+l, forkZ~O .
i=

-k~-f+l, for k~ <0 ‘

.1

{

Aj -f’ +1, fmk~>O .
1=

– kj –/’’+1, for kj <0 ‘

II =

{

~y-f’’+l, for k!j 20
I

–k; –(’’’+l, for k; <0 “

(5.Gn)

(5.61))

(w!)

TIM*imlirm i, i’, i“ arise in thr canonical Mclling of the opcmtor pat-
tm~s in m givrn multiplicity Met in tiw following way (me Rcfs, 32-34). It is
sufficiwlt to illtlstrntc the rub: for the index i, ~ince t!le others arc ohtnine(l

sinlihulyo LT(3) opwrhtor p; t ~:rns Illny ~ or(~(~m(l by two diffmrnt ruhw,

whirh, it tlml~ {Nit, m“ IX)!lllliltil)l(’m In thr fir~t rule, wc write for k~ ~ ():

(“rk~:t+:’)=(’”:-;’);
t]lnt is,

(5.7J1)

(5.71))



Three incqmditim on qwratm patterns then accord exnctly with the ntwtcil
proprrtim of tiw null spnre of the unit tenmr qwrntor~

(5.9n)

w givm hy

N(rl)oiv(rz)o ““0 3~(r~). (5.9b)

{.V,, A12, . . . , M,} , with p = 78, (5.1011)

ht~=,-hfr, ~= 1,2,,,,,781 (5.101))

!j~ing this mmlt in Eq, (4,61)), wr fhtnin

ft=_f, ~=1, ,i, ,78, 01)~,42i 11, (5.11)



of the Kronecker product [0 -2 - 4] x [4 2 O]. This reduction is given by
E(1s. (3,15)-(3.17) to be

[0-2 –4]X [420]=

[4 O – 4] {+[4 – 1 – 3] (14[3 1 -4]

125 81 81

+[4 —2 —2] iP[2 2 —4] 112[3 O - 3] (32[3 - 1 - 2] @2[2 1 – 3]
28 ~~ 64 35 35

,~lo[z o – ~] ,p[~ – 1 – 1] (f)[l 1 – ~] (+)~[1 o - 1] +[(’) (-J 0]

~i 10 10 8 1’
(5.12)

wllt~ro wo hnvo writ, trll thr (Iillwnsi(m }M’lowwwh irrep Inbrl. We we from
this rrsult t.lmt. thr (rely irrcp Mrls tlmt qludify for hdmlling thr rrmnining
~wwrntors (If Ed ill thr Rnral) h~i~ nrr thr thirty-five dimrmiomd conjllg~tv
irrrps

[2 1 – 3] ILIMI[3 -1 - f?] .

(2; --3)t-(-))@(’”(3-i-2)
i-=(,‘)--J“r(2“-J1

\vlltv’v



Using this result in Eq, (4.!lb), tqq%her with the n.ntihermitian property of
tiw mutrix Mr, m)w givtw

“(2 ~ -3)= -(-1)o(o)Rr(3 -: -2) ‘515’))

for rnrh of thr operator p~ttt:rns A in Eq, (5. lh) ( uotr thnt ~ = A).
\Yr now usc rr]ation (5, l~a) in Eq. (4.9a), srlecting only thr tmms

[2 1 - 3] Id [3 -1 - ~] fr~m t~le ~llm, to cmclurle that the remain-
ing grncrntors of Ed in the Rmmh Imqis are given by

‘r=@(2 ‘NE(2 ‘?-3)

-M+ J(--1)’(’’’E(3 ‘-?-2)

()

.. ( )1(--l)$~’v’ ~ 1’d

:) 1 -2 ‘
(i

[)

( )1/’t
I ( I)@’”) 1;

3 I ?’

tt

(r),l!il))



where a runs over all thirty-five Gel’fand patterns for the given irrep labels.
These operators thrn satisfy the following identities on the space H14 z O]:

Ly = –Q/) , Ly = +) , (5.1!3)

Lrt IN now consider
llilVt’, first of id], that tll(’

[(
o

EIOo O
(i, j) ) J

the conseq~lcnces of the & cmhedding (5,3), Wt:
commutators

-1 )1
, L$) a=l,2, i+j=l,2,3 (5.20)v

i=j=l,2,

Ilmst close on the generators of l?e. These commutators must, by const ruc-
tion of the Racah basis, close Automatically on the generritms of 12Hbecrmsc
of the irrrdlwihlc tensor property rxprcwwd by Eq. (3.44) (see Eq~. (3.40)
nmi (3,43)), Tlmt i~, the closure of the commutdors (5,20) is n property of
t hr RIKnh hmih, nnd ~ of t hc & embedding, Indeed, in consequence of
thr irrwlucildc tensor oprmtor propmty (3.44) and the generator relation~
(3,40 ), the Struct~wc constnnts for tlw Rmmh h~qis must olmy the rclmtious:

ffmi+j= 1,2,3; i=j=l,2;

(5.211L)

()

[1
,,11()()A/i[k”]10()()][k]=hlkf~][k]~A”Ah’,t. (~m~II(}()()(k()



on the & g(’nOratOrS,
the gtmrrators into the
u Iimwr comhinntion of

()
~11

E [k”]
n“

In the next step, we substitute relations (5.18) for
ctm~mutator (5.20), ~~sing relation (3.46a) to obtain
the Racah hwqis elements of the form

[k”] E [2 1 -3]X[2 1-3],

with [k’’]E[2 1–3]X[3–1 –2],
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